

The Underlying Event: DiJet vs Z-Jet

Comparing Data with QCD Monte-Carlo Models

Select "clean" region Field-Stuart Method

Look only at the charged particles measured by the CTC

QCD
Monte-Carlo

Make efficiency corrections

- **⇒** Zero or one vertex
- \Rightarrow |zc-zv| < 2 cm, |CTC d0| < 1 cm
- \Rightarrow Require PT > 0.5 GeV, $|\eta| < 1$
- **⇒** Assume a uniform track finding efficiency of 92%
- ⇒ Errors include both statistical and correlated systematic uncertainties

 \Rightarrow Require PT > 0.5 GeV, $|\eta| < 1$

- **→** Make an 8% correction for the track finding efficiency
- ⇒ Errors (statistical plus systematic) of around 5%

Uncorrected data

Corrected theory

compare

- \Rightarrow Look at charged particle correlations in the azimuthal angle $\Delta \phi$.
- **Define** $|\Delta\phi|$ < 60° as "Toward", 60° < $|\Delta\phi|$ < 120° as "Transverse", and $|\Delta\phi|$ > 120° as "Away".
- \Rightarrow All three regions have the same size in η-φ space, $\Delta \eta x \Delta \phi = 2x120^{\circ}$.

DiJet: Charged Multiplicity versus PT(chgjet#1)

Dijet data on the average number of "toward" ($|\Delta \phi| < 60^{\circ}$), "transverse" ($60 < |\Delta \phi| < 120^{\circ}$), and "away" ($|\Delta \phi| > 120^{\circ}$) charged particles ($P_T > 0.5$ GeV, $|\eta| < 1$, including jet#1) as a function of the transverse momentum of the leading charged particle jet. Each point corresponds to the <Nchg> in a 1 GeV bin. The solid (open) points are the Min-Bias (JET20) data. The errors on the (*uncorrected*) data include both statistical and correlated systematic uncertainties.

Blessed on November 3, 1999

DiJet: Charged PTsum versus PT(chgjet#1)

Dijet data on the average scalar P_T sum of "toward" ($|\Delta \phi| < 60^\circ$), "transverse" ($60 < |\Delta \phi| < 120^\circ$), and "away" ($|\Delta \phi| > 120^\circ$) charged particles ($P_T > 0.5$ GeV, $|\eta| < 1$, including jet#1) as a function of the transverse momentum of the leading charged particle jet. Each point corresponds to the <PTsum> in a 1 GeV bin. The solid (open) points are the Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

Blessed on November 3, 1999

Z-boson: Charged Multiplicity versus PT(Z)

Z-boson data on the average number of "toward" ($|\Delta \phi| < 60^{\circ}$), "transverse" ($60 < |\Delta \phi| < 120^{\circ}$), and "away" ($|\Delta \phi| > 120^{\circ}$) charged particles ($P_T > 0.5$ GeV, $|\eta| < 1$, excluding decay products of the Z-boson) as a function of the transverse momentum of the Z-boson. The errors on the (*uncorrected*) data include both statistical and correlated systematic uncertainties.

Z-boson: Charged PTsum versus PT(Z)

Z-boson data on the average scalar P_T sum of "toward" ($|\Delta \phi| < 60^\circ$), "transverse" ($60 < |\Delta \phi| < 120^\circ$), and "away" ($|\Delta \phi| > 120^\circ$) charged particles ($P_T > 0.5$ GeV, $|\eta| < 1$, excluding decay products of the Z-boson) as a function of the transverse momentum of the Z-boson. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties.

DiJet vs Z-Jet "Toward" Nchg

- Comparison of the dijet and the Z-boson data on the average number of charged particles ($P_T > 0.5 \text{ GeV}$, $|\eta| < 1$) for the "toward" region.
- ⇒ The plot shows the QCD Monte-Carlo predictions of ISAJET 7.32 for dijet (dashed) and "Z-jet" (solid) production.

DiJet vs Z-Jet "Toward" Nchg

- Comparison of the dijet and the Z-boson data on the average number of charged particles ($P_T > 0.5 \text{ GeV}$, $|\eta| < 1$) for the "toward" region.
- ⇒ The plot shows the QCD Monte-Carlo predictions of PYTHIA 6.115 for dijet (dashed) and "Z-jet" (solid) production.

DiJet: "Toward" Nchg versus PT(chgjet#1)

- ⇒ Plot shows the dijet "toward" <Nchg> vs P_T(chgjet#1) compared to the QCD "hard" scattering predictions of ISAJET 7.32.
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

 Blessed on February 25, 2000

Z-boson: "Toward" Nchg versus PT(Z)

- ⇒ Plot shows the Z-boson "toward" <Nchg> vs P_T(Z) compared to the "Z+jet" QCD Monte-Carlo predictions of ISAJET 7.32.
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jet plus final-state radiation.

DiJet vs Z-Jet "Toward" Nchg

- Comparison of the QCD Monte-Carlo predictions of ISAJET 7.32 for the average number of charged particles ($P_T > 0.5$ GeV and $|\eta| < 1$) for the "toward" region for dijet (dashed) and "Z-jet" (solid) production.
- The plot shows the charged particles that arise from the break-up of the beam and target (beam-beam remnants) and the charged particles that arise from from initial-state radiation.

Z-boson: "Toward" Nchg versus PT(Z)

Arr Z-boson data on the average number of charged particles ($P_T > 0.5$ GeV and |η| < 1) as a function of $P_T(Z)$ for the "toward" region compared with the QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").

Z-boson: "Toward" PTsum versus PT(Z)

Z-boson data on the average scalar P_T sum of charged particles ($P_T > 0.5$ GeV and $|\eta| < 1$) as a function of $P_T(Z)$ for the "toward" region compared with the QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").

DiJet vs Z-Jet "Away" Nchg

- Comparison of the dijet and the Z-boson data on the average number of charged particles ($P_T > 0.5 \text{ GeV}$, $|\eta| < 1$) for the "away" region.
- ⇒ The plot shows the QCD Monte-Carlo predictions of ISAJET 7.32 for dijet (dashed) and "Z-jet" (solid) production.

DiJet vs Z-Jet "Away" Nchg

- Comparison of the dijet and the Z-boson data on the average number of charged particles ($P_T > 0.5 \text{ GeV}$, $|\eta| < 1$) for the "away" region.
- The plot shows the QCD Monte-Carlo predictions of PYTHIA 6.115 for dijet (dashed) and "Z-jet" (solid) production.

DiJet: "Away" Nchg versus PT(chgjet#1)

- ⇒ Plot shows the dijet "away" <Nchg> vs P_T(chgjet#1) compared to the QCD "hard" scattering predictions of ISAJET 7.32.
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

 Blessed on February 25, 2000

Z-boson: "Away" Nchg versus PT(Z)

- Plot shows the Z-boson "away" <Nchg> vs $P_T(Z)$ compared to the "Z+jet" QCD Monte-Carlo predictions of ISAJET 7.32.
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

DiJet vs Z-Jet "Away" Nchg

- Comparison of the QCD Monte-Carlo predictions of ISAJET 7.32 for the average number of charged particles ($P_T > 0.5$ GeV and $|\eta| < 1$) for the "away" region for dijet (dashed) and "Z-jet" (solid) production.
- The plot shows the charged particles that arise from the break-up of the beam and target (beam-beam remnants), and the charged particles that arise from from initial-state radiation, and the charge particles that come from the outgoing jet plus final-state radiation.

Z-boson: "Away" Nchg versus PT(Z)

Arr Z-boson data on the average number of charged particles ($P_T > 0.5$ GeV and |η| < 1) as a function of $P_T(Z)$ for the "away" region compared with the QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").

Z-boson: "Away" PTsum versus PT(Z)

Arr Z-boson data on the average scalar P_T sum of charged particles ($P_T > 0.5$ GeV and $|\eta| < 1$) as a function of $P_T(Z)$ for the "away" region compared with the QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").

DiJet vs Z-Jet "Transverse" Nchg

- Comparison of the dijet and the Z-boson data on the average number of charged particles ($P_T > 0.5 \text{ GeV}$, $|\eta| < 1$) for the "transverse" region.
- ⇒ The plot shows the QCD Monte-Carlo predictions of ISAJET 7.32 for dijet (dashed) and "Z-jet" (solid) production.

DiJet vs Z-Jet "Transverse" Nchg

- Comparison of the dijet and the Z-boson data on the average number of charged particles ($P_T > 0.5 \text{ GeV}$, $|\eta| < 1$) for the "transverse" region.
- ⇒ The plot shows the QCD Monte-Carlo predictions of PYTHIA 6.115 for dijet (dashed) and "Z-jet" (solid) production.

- Plot shows the dijet "transverse" <Nchg> vs P_T(chgjet#1) compared to the QCD "hard" scattering predictions of ISAJET 7.32.
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

 Blessed on February 25, 2000

- Plot shows the dijet "transverse" <Nchg> vs P_T(chgjet#1) compared to the QCD "hard" scattering predictions of PYTHIA 6.115.
- The predictions of PYTHIA are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component).

 Blessed on February 25, 2000

- **QCD "hard" scattering predictions of HERWIG 5.9, ISAJET 7.32, and PYTHIA 6.115.**
- \Rightarrow Plot shows the dijet "transverse" <Nchg> vs P_T (chgjet#1) arising from the outgoing jets plus initial and finial-state radiation (hard scattering component).

Blessed on February 25, 2000

- **QCD** "hard" scattering predictions of **HERWIG 5.9**, ISAJET 7.32, and PYTHIA 6.115.
- Plot shows the dijet "transverse" <Nchg> vs P_T (chgjet#1) arising from the beam-beam remnants. For Pythia the beam-beam remnants include contributions from multiple parton scattering.

Blessed on February 25, 2000

Z-boson: "Transverse" Nchg versus PT(Z)

- ⇒ Plot shows the Z-boson "transverse" <Nchg> vs P_T(Z) compared to the "Z+jet" QCD Monte-Carlo predictions of ISAJET 7.32.
- The predictions of ISAJET are divided into three categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants), charged particles that arise from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

DiJet vs Z-Jet "Transverse" Nchg

- Comparison of the QCD Monte-Carlo predictions of ISAJET 7.32 for the average number of charged particles ($P_T > 0.5$ GeV and $|\eta| < 1$) for the "transverse" region for dijet (dashed) and "Z-jet" (solid) production.
- The plot shows the charged particles that arise from the break-up of the beam and target (beam-beam remnants), and the charged particles that arise from from initial-state radiation, and charged particles that result from the outgoing jets plus final-state radiation.

Z-boson: "Transverse" Nchg 🧖

- \Rightarrow Plot shows the Z-boson "transverse" < Nchg> vs $P_T(Z)$ compared to the "Z+jet" QCD **Monte-Carlo predictions of PYTHIA 6.115.**
- The predictions of PYTHIA are divided into two categories: charged particles that arise from the break-up of the beam and target (beam-beam remnants); and charged particles that arise from the outgoing jet plus initial and final-state radiation (hard scattering component).

Z-boson: "Transverse" Nchg versus PT(Z)

Arr Z-boson data on the average number of charged particles ($P_T > 0.5$ GeV and |η| < 1) as a function of $P_T(Z)$ for the "transverse" region compared with the QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").

Z-boson: "Transverse" Nchg versus PT(Z)

- **QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").**
- \Rightarrow Plot shows the Z-boson "transverse" <Nchg> vs $P_T(Z)$ arising from the outgoing jets plus initial and finial-state radiation (hard scattering component).

Z-boson: "Transverse" Nchg versus PT(Z)

- **QCD Monte-Carlo predictions of HERWIG 5.9 ("Z"), ISAJET 7.32 ("Z-jet"), and PYTHIA 6.115 ("Z", "Z-jet").**
- Plot shows the Z-boson "transverse" <Nchg> vs $P_T(Z)$ arising from the beam-beam remnants. For PYTHIA the beam-beam remnants include contributions from multiple parton scattering.